mirror of
https://github.com/gaitas13/dotfiles.git
synced 2025-12-06 07:15:37 +01:00
259 lines
8.7 KiB
GLSL
Executable file
259 lines
8.7 KiB
GLSL
Executable file
// MIT License
|
|
|
|
// Copyright (c) 2023 João Chrisóstomo
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
// of this software and associated documentation files (the "Software"), to deal
|
|
// in the Software without restriction, including without limitation the rights
|
|
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
// copies of the Software, and to permit persons to whom the Software is
|
|
// furnished to do so, subject to the following conditions:
|
|
|
|
// The above copyright notice and this permission notice shall be included in all
|
|
// copies or substantial portions of the Software.
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
// SOFTWARE.
|
|
|
|
//!HOOK CHROMA
|
|
//!BIND LUMA
|
|
//!BIND HOOKED
|
|
//!SAVE LUMA_LOWRES
|
|
//!WIDTH CHROMA.w
|
|
//!HEIGHT LUMA.h
|
|
//!WHEN CHROMA.w LUMA.w <
|
|
//!DESC Joint Bilateral (Downscaling Luma 1st Step)
|
|
|
|
vec4 hook() {
|
|
float factor = ceil(LUMA_size.x / HOOKED_size.x);
|
|
int start = int(ceil(-factor / 2.0 - 0.5));
|
|
int end = int(floor(factor / 2.0 - 0.5));
|
|
|
|
float output_luma = 0.0;
|
|
int wt = 0;
|
|
for (int dx = start; dx <= end; dx++) {
|
|
output_luma += LUMA_texOff(vec2(dx + 0.5, 0.0)).x;
|
|
wt++;
|
|
}
|
|
vec4 output_pix = vec4(output_luma / float(wt), 0.0, 0.0, 1.0);
|
|
return output_pix;
|
|
}
|
|
|
|
//!HOOK CHROMA
|
|
//!BIND LUMA_LOWRES
|
|
//!BIND HOOKED
|
|
//!SAVE LUMA_LOWRES
|
|
//!WIDTH CHROMA.w
|
|
//!HEIGHT CHROMA.h
|
|
//!WHEN CHROMA.w LUMA.w <
|
|
//!DESC Joint Bilateral (Downscaling Luma 2nd Step)
|
|
|
|
vec4 hook() {
|
|
float factor = ceil(LUMA_LOWRES_size.y / HOOKED_size.y);
|
|
int start = int(ceil(-factor / 2.0 - 0.5));
|
|
int end = int(floor(factor / 2.0 - 0.5));
|
|
|
|
float output_luma = 0.0;
|
|
int wt = 0;
|
|
for (int dy = start; dy <= end; dy++) {
|
|
output_luma += LUMA_LOWRES_texOff(vec2(0.0, dy + 0.5)).x;
|
|
wt++;
|
|
}
|
|
vec4 output_pix = vec4(output_luma / float(wt), 0.0, 0.0, 1.0);
|
|
return output_pix;
|
|
}
|
|
|
|
//!PARAM distance_coeff
|
|
//!TYPE float
|
|
//!MINIMUM 0.0
|
|
0.5
|
|
|
|
//!PARAM intensity_coeff
|
|
//!TYPE float
|
|
//!MINIMUM 0.0
|
|
512.0
|
|
|
|
//!HOOK CHROMA
|
|
//!BIND LUMA
|
|
//!BIND LUMA_LOWRES
|
|
//!BIND HOOKED
|
|
//!WIDTH LUMA.w
|
|
//!HEIGHT LUMA.h
|
|
//!WHEN CHROMA.w LUMA.w <
|
|
//!OFFSET ALIGN
|
|
//!DESC Joint Bilateral (Upscaling Chroma)
|
|
|
|
#define USE_SHARP_SPATIAL_FILTER 1
|
|
|
|
float comp_wd1(vec2 distance) {
|
|
float d2 = min(pow(length(distance), 2.0), 4.0);
|
|
return (25.0 / 16.0 * pow(2.0 / 5.0 * d2 - 1.0, 2.0) - (25.0 / 16.0 - 1.0)) * pow(1.0 / 4.0 * d2 - 1.0, 2.0);
|
|
}
|
|
|
|
float comp_wd2(vec2 distance) {
|
|
return exp(-distance_coeff * pow(length(distance), 2.0));
|
|
}
|
|
|
|
float comp_wi(float distance) {
|
|
return exp(-intensity_coeff * pow(distance, 2.0));
|
|
}
|
|
|
|
vec4 hook() {
|
|
#if (USE_SHARP_SPATIAL_FILTER == 1)
|
|
float ar_strength = 0.5;
|
|
float division_limit = 1e-4;
|
|
#endif
|
|
float luma_zero = LUMA_texOff(0.0).x;
|
|
vec4 output_pix = vec4(0.0, 0.0, 0.0, 1.0);
|
|
|
|
vec2 pp = HOOKED_pos * HOOKED_size - vec2(0.5);
|
|
vec2 fp = floor(pp);
|
|
pp -= fp;
|
|
|
|
vec2 chroma_pixels[12];
|
|
chroma_pixels[0] = HOOKED_tex(vec2((fp + vec2(0.5, -0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[1] = HOOKED_tex(vec2((fp + vec2(1.5, -0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[2] = HOOKED_tex(vec2((fp + vec2(-0.5, 0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[3] = HOOKED_tex(vec2((fp + vec2( 0.5, 0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[4] = HOOKED_tex(vec2((fp + vec2( 1.5, 0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[5] = HOOKED_tex(vec2((fp + vec2( 2.5, 0.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[6] = HOOKED_tex(vec2((fp + vec2(-0.5, 1.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[7] = HOOKED_tex(vec2((fp + vec2( 0.5, 1.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[8] = HOOKED_tex(vec2((fp + vec2( 1.5, 1.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[9] = HOOKED_tex(vec2((fp + vec2( 2.5, 1.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[10] = HOOKED_tex(vec2((fp + vec2( 0.5, 2.5)) * HOOKED_pt)).xy;
|
|
chroma_pixels[11] = HOOKED_tex(vec2((fp + vec2( 1.5, 2.5)) * HOOKED_pt)).xy;
|
|
|
|
float luma_pixels[12];
|
|
luma_pixels[0] = LUMA_LOWRES_tex(vec2((fp + vec2(0.5, -0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[1] = LUMA_LOWRES_tex(vec2((fp + vec2(1.5, -0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[2] = LUMA_LOWRES_tex(vec2((fp + vec2(-0.5, 0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[3] = LUMA_LOWRES_tex(vec2((fp + vec2( 0.5, 0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[4] = LUMA_LOWRES_tex(vec2((fp + vec2( 1.5, 0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[5] = LUMA_LOWRES_tex(vec2((fp + vec2( 2.5, 0.5)) * HOOKED_pt)).x;
|
|
luma_pixels[6] = LUMA_LOWRES_tex(vec2((fp + vec2(-0.5, 1.5)) * HOOKED_pt)).x;
|
|
luma_pixels[7] = LUMA_LOWRES_tex(vec2((fp + vec2( 0.5, 1.5)) * HOOKED_pt)).x;
|
|
luma_pixels[8] = LUMA_LOWRES_tex(vec2((fp + vec2( 1.5, 1.5)) * HOOKED_pt)).x;
|
|
luma_pixels[9] = LUMA_LOWRES_tex(vec2((fp + vec2( 2.5, 1.5)) * HOOKED_pt)).x;
|
|
luma_pixels[10] = LUMA_LOWRES_tex(vec2((fp + vec2( 0.5, 2.5)) * HOOKED_pt)).x;
|
|
luma_pixels[11] = LUMA_LOWRES_tex(vec2((fp + vec2( 1.5, 2.5)) * HOOKED_pt)).x;
|
|
|
|
vec2 chroma_min = vec2(1e8);
|
|
chroma_min = min(chroma_min, chroma_pixels[3]);
|
|
chroma_min = min(chroma_min, chroma_pixels[4]);
|
|
chroma_min = min(chroma_min, chroma_pixels[7]);
|
|
chroma_min = min(chroma_min, chroma_pixels[8]);
|
|
|
|
vec2 chroma_max = vec2(1e-8);
|
|
chroma_max = max(chroma_max, chroma_pixels[3]);
|
|
chroma_max = max(chroma_max, chroma_pixels[4]);
|
|
chroma_max = max(chroma_max, chroma_pixels[7]);
|
|
chroma_max = max(chroma_max, chroma_pixels[8]);
|
|
|
|
#if (USE_SHARP_SPATIAL_FILTER == 1)
|
|
float wd1[12];
|
|
wd1[0] = comp_wd1(vec2( 0.0,-1.0) - pp);
|
|
wd1[1] = comp_wd1(vec2( 1.0,-1.0) - pp);
|
|
wd1[2] = comp_wd1(vec2(-1.0, 0.0) - pp);
|
|
wd1[3] = comp_wd1(vec2( 0.0, 0.0) - pp);
|
|
wd1[4] = comp_wd1(vec2( 1.0, 0.0) - pp);
|
|
wd1[5] = comp_wd1(vec2( 2.0, 0.0) - pp);
|
|
wd1[6] = comp_wd1(vec2(-1.0, 1.0) - pp);
|
|
wd1[7] = comp_wd1(vec2( 0.0, 1.0) - pp);
|
|
wd1[8] = comp_wd1(vec2( 1.0, 1.0) - pp);
|
|
wd1[9] = comp_wd1(vec2( 2.0, 1.0) - pp);
|
|
wd1[10] = comp_wd1(vec2( 0.0, 2.0) - pp);
|
|
wd1[11] = comp_wd1(vec2( 1.0, 2.0) - pp);
|
|
|
|
float wt1 = 0.0;
|
|
for (int i = 0; i < 12; i++) {
|
|
wt1 += wd1[i];
|
|
}
|
|
|
|
vec2 ct1 = vec2(0.0);
|
|
for (int i = 0; i < 12; i++) {
|
|
ct1 += wd1[i] * chroma_pixels[i];
|
|
}
|
|
|
|
vec2 chroma_spatial = clamp(ct1 / wt1, 0.0, 1.0);
|
|
chroma_spatial = mix(chroma_spatial, clamp(chroma_spatial, chroma_min, chroma_max), ar_strength);
|
|
#endif
|
|
float wd2[12];
|
|
wd2[0] = comp_wd2(vec2( 0.0,-1.0) - pp);
|
|
wd2[1] = comp_wd2(vec2( 1.0,-1.0) - pp);
|
|
wd2[2] = comp_wd2(vec2(-1.0, 0.0) - pp);
|
|
wd2[3] = comp_wd2(vec2( 0.0, 0.0) - pp);
|
|
wd2[4] = comp_wd2(vec2( 1.0, 0.0) - pp);
|
|
wd2[5] = comp_wd2(vec2( 2.0, 0.0) - pp);
|
|
wd2[6] = comp_wd2(vec2(-1.0, 1.0) - pp);
|
|
wd2[7] = comp_wd2(vec2( 0.0, 1.0) - pp);
|
|
wd2[8] = comp_wd2(vec2( 1.0, 1.0) - pp);
|
|
wd2[9] = comp_wd2(vec2( 2.0, 1.0) - pp);
|
|
wd2[10] = comp_wd2(vec2( 0.0, 2.0) - pp);
|
|
wd2[11] = comp_wd2(vec2( 1.0, 2.0) - pp);
|
|
|
|
float wi[12];
|
|
for (int i = 0; i < 12; i++) {
|
|
wi[i] = comp_wi(luma_zero - luma_pixels[i]);
|
|
}
|
|
|
|
float w[12];
|
|
for (int i = 0; i < 12; i++) {
|
|
w[i] = wd2[i] * wi[i];
|
|
}
|
|
|
|
float wt2 = 0.0;
|
|
for (int i = 0; i < 12; i++) {
|
|
wt2 += w[i];
|
|
}
|
|
|
|
vec2 ct2 = vec2(0.0);
|
|
for (int i = 0; i < 12; i++) {
|
|
ct2 += w[i] * chroma_pixels[i];
|
|
}
|
|
|
|
vec2 chroma_bilat = clamp(ct2 / wt2, 0.0, 1.0);
|
|
|
|
#if (USE_SHARP_SPATIAL_FILTER == 1)
|
|
float luma_avg = 0.0;
|
|
for(int i = 0; i < 12; i++) {
|
|
luma_avg += luma_pixels[i];
|
|
}
|
|
luma_avg /= 12.0;
|
|
|
|
float luma_var = 0.0;
|
|
for(int i = 0; i < 12; i++) {
|
|
luma_var += pow(luma_pixels[i] - luma_avg, 2.0);
|
|
}
|
|
|
|
vec2 chroma_avg = vec2(0.0);
|
|
for(int i = 0; i < 12; i++) {
|
|
chroma_avg += chroma_pixels[i];
|
|
}
|
|
chroma_avg /= 12.0;
|
|
|
|
vec2 chroma_var = vec2(0.0);
|
|
for(int i = 0; i < 12; i++) {
|
|
chroma_var += pow(chroma_pixels[i] - chroma_avg, vec2(2.0));
|
|
}
|
|
|
|
vec2 luma_chroma_cov = vec2(0.0);
|
|
for(int i = 0; i < 12; i++) {
|
|
luma_chroma_cov += (luma_pixels[i] - luma_avg) * (chroma_pixels[i] - chroma_avg);
|
|
}
|
|
|
|
vec2 corr = abs(luma_chroma_cov / max(sqrt(luma_var * chroma_var), division_limit));
|
|
corr = clamp(corr, 0.0, 1.0);
|
|
|
|
output_pix.xy = mix(chroma_spatial, chroma_bilat, pow(corr, vec2(2.0)) / 2.0);
|
|
output_pix.xy = clamp(output_pix.xy, 0.0, 1.0);
|
|
#else
|
|
output_pix.xy = chroma_bilat;
|
|
#endif
|
|
return output_pix;
|
|
}
|